Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(43): 30230-30242, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37854492

RESUMO

Pure zinc oxide nanoparticles, as well as those doped with 3% calcium, aluminum, and gallium, were synthesized using a sol-gel method and then deposited onto an alumina substrate for sensing tests. The resulting nanoparticles were characterized using a variety of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), UV-VIS-NIR absorption spectroscopy, and photoluminescence (PL) measurements, to examine their structural, morphological, and optical properties. The prepared nanoparticles were found to have the hexagonal wurtzite structure of ZnO with a P63mC space group. The UV-Vis-IR spectra showed that the samples are highly absorbent in the UV range, while the PL spectra confirmed the presence of many defects in the ZnO structure, such as oxygen vacancies and zinc interstitials. The doped samples exhibited more defects than the pure sample. SEM images of the deposited film surface showed agglomerates with a spherical shape and confirmed the nanometer scale size of our prepared samples, as corroborated by the TEM images. The EDX spectra indicated the high purity of the ZnO deposited films, with a high presence of Zn and O and the presence of the doped elements (Ca, Al, and Ga) in each doped sample. Sensing tests were performed on ZnO, Ca3%-doped ZnO (C3ZO), Al3%-doped ZnO (A3ZO), and Ga3%-doped ZnO (G3ZO) sensors in the presence of volatile organic compounds (VOCs) gases such as ethanol, formaldehyde, methanol, and acetone at low concentrations. The sensors exhibited high responses to low ppm level concentrations of the VOCs gases. At a low operational temperature of 250 °C, the C3ZO sensor had the highest response to 5 ppm of ethanol, methanol, and formaldehyde gases compared to the pure and other doped sensors. Additionally, the A3ZO sensor exhibited the highest response to acetone gas. In conclusion, our findings suggest that the doping of zinc oxide can enhance the low concentration detection of VOCs gases, with the C3ZO and A3ZO sensors showing the highest response to specific gases.

2.
RSC Adv ; 12(34): 22064-22069, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36043074

RESUMO

Nitric oxide (NO) selective sensors capable of sensing in a hot-gas environment are increasingly required for monitoring combustion and processes yielding high temperature gas containing NO. This work reports the fabrication of sensors by a facile deposition of water-based ink blended commercial WO3 powders via spray coating on sensor platforms fitted with Au-interdigitated electrodes (IDEs) and the characterization of their sensing performances under hot NO-containing air at temperatures exceeding 500 °C. After deposition and heat treatment of the sensing material on the substrate fitted with Au-IDE at 700 °C, the composition and morphology of the active material were analyzed and the presence of a single phase, fine particulates of WO3, has been confirmed by XRD and SEM, respectively. The investigation of the sensing properties revealed that, contrary to the previous reports, this WO3 sensor can detect NO with a good sensitivity (∼22% for 200 ppm NO) and selectivity at 700 °C under humidity. The effect of relative humidity on sensing performance was also investigated. Also, under humidity values as high as 10% RH and at gas temperatures as high as 700 °C, a reasonably good sensor performance has been observed. It is likely that the improved response towards NO at moderately elevated temperatures resulted from the humidity related water molecules which are adsorbed on the surfaces of WO3 particles, providing high affinity hydrogen bonds between NO and OH.

3.
Langmuir ; 37(51): 14846-14855, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34914876

RESUMO

Understanding the colloidal stability and aggregation behavior of TiO2 nanoparticles in aqueous suspension is a prerequisite to tune supracolloidal structure formation. While the aggregation mechanism for dried TiO2 nanopowders is well documented, there is still work to be done to understand TiO2 nanoparticle aggregation in suspension. Therefore, this work focuses on the colloidal stability and aggregation mechanism of TiO2 nanoparticle aqueous suspensions prepared using a straightforward one-step sol-gel-based approach over a concentration range of 0.5-5 wt %. Fully crystalline nanoparticles consisting primarily of anatase were obtained. After assessing the colloidal stability of the as-prepared suspensions, small-angle X-ray scattering coupled with fractal analysis was carried out. This analysis showed, for the first time, how the TiO2 nanoparticle aggregation mechanism─predicted by the diffusion limited cluster-cluster aggregation (DLCA) and diffusion limited particle-cluster aggregation (DLA) theories─depends directly on the starting concentration in the aqueous suspensions. We found that concentrated suspensions favored DLA, while dilute suspensions tend to follow the DLCA mechanism. The effect of the aggregation mechanism on the aggregate shape is also discussed.

4.
Foods ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200407

RESUMO

Boar taint detection is a major concern for the pork industry. Currently, this taint is mainly detected through a sensory evaluation. However, little is known about the entire volatile organic compounds (VOCs) profile perceived by the assessor. Additionally, many research groups are working on the development of new rapid and reliable detection methods, which include the VOCs sensor-based methods. The latter are susceptible to sensor poisoning by interfering molecules produced during high-temperature heating of fat. Analyzing the VOC profiles obtained by solid phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS) after incubation at 150 and 180 °C helps in the comprehension of the environment in which boar taint is perceived. Many similarities were observed between these temperatures; both profiles were rich in carboxylic acids and aldehydes. Through a principal component analysis (PCA) and analyses of variance (ANOVAs), differences were highlighted. Aldehydes such as (E,E)-nona-2,4-dienal exhibited higher concentrations at 150 °C, while heating at 180 °C resulted in significantly higher concentrations in fatty acids, several amide derivatives, and squalene. These differences stress the need for standardized parameters for sensory evaluation. Lastly, skatole and androstenone, the main compounds involved in boar taint, were perceived in the headspace at these temperatures but remained low (below 1 ppm). Higher temperature should be investigated to increase headspace concentrations provided that rigorous analyses of total VOC profiles are performed.

5.
Sensors (Basel) ; 21(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669589

RESUMO

Since the first graphene gas sensor has been reported, functionalized graphene gas sensors have already attracted a lot of research interest due to their potential for high sensitivity, great selectivity, and fast detection of various gases. In this paper, we summarize the recent development and progression of functionalized graphene sensors for ammonia (NH3) detection at room temperature. We review graphene gas sensors functionalized by different materials, including metallic nanoparticles, metal oxides, organic molecules, and conducting polymers. The various sensing mechanism of functionalized graphene gas sensors are explained and compared. Meanwhile, some existing challenges that may hinder the sensor mass production are discussed and several related solutions are proposed. Possible opportunities and perspective applications of the graphene NH3 sensors are also presented.

6.
Biosens Bioelectron ; 142: 111506, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325674

RESUMO

Saccharide sensors represent a broad research area in the scope of sensing devices and their involvement in the medical diagnosis field is particularly relevant for cancer detection at early stage. In that context, we present a non-enzymatic optical fiber-based sensor that makes use of plasmon-assisted tilted fiber Bragg gratings (TFBGs) functionalized for D-glucose biosensing through polydopamine (PDA)-immobilized concanavalin A (Con A). Our probe allows a live and accurate monitoring of the PDA layer deposition leading improved surface biochemistry. The SPR shift observed was assessed to 3.83 ±â€¯0.05 nm within 20 min for a 2 mg/mL dopamine solution. Tests performed in different D-Glucose solutions have revealed a limit of detection close to 10-7 M with the highest sensitivity in the 10-6 to 10-4 M range. This configuration has the capability to overcome the limitations of current enzyme-based solutions.


Assuntos
Concanavalina A/química , Glucose/análise , Indóis/química , Polímeros/química , Ressonância de Plasmônio de Superfície/métodos , Desenho de Equipamento , Humanos , Proteínas Imobilizadas/química , Limite de Detecção , Fibras Ópticas , Ressonância de Plasmônio de Superfície/instrumentação
7.
Opt Lett ; 43(10): 2308-2311, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762579

RESUMO

Surface plasmon resonance excitation with optical fiber gratings has been typically studied in aqueous solutions. This work describes the procedure to excite a plasmon wave in gaseous media and perform refractive index measurements in these environments. Grating photo-inscription with 193 nm excimer laser radiation allows us to obtain slightly tilted fiber Bragg gratings exhibiting a cladding mode resonance comb along several hundreds of nanometers. Their refractive index sensitive range extends from gases to liquids, so operation in both media is compared. We demonstrate that the thickness of the metal coating required for surface plasmon excitation in gases is roughly one third of the one usually used for liquids. The developed platforms exhibit a temperature insensitive response of 78 nm/RIU when tested with different gases.

8.
Sensors (Basel) ; 18(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494541

RESUMO

In this article, we describe a NO2 sensor consisting of a coating based on lutetium bisphthalocyanine (LuPc2) in mesoporous silica. The sensor exploits the absorption spectrum change of this material which strongly and reversibly decreases in contact with NO2. NO2 is measured by following the amplitude change in the reflected spectrum of the coating deposited on the tip of a silica fibre. As diffusion of NO2 in LuPc2 is slow, the response time could be slow. To reduce it, the active molecules are dispersed in a mesoporous silica matrix deposited by a sol-gel process (Evaporation Induced Self Assembly) avoiding the formation of large crystals. Doing so, the response is fairly fast. As the recovery is slow at room temperature, the recovery time is reduced by exposure to UV light at 365 nm. This UV light is directly introduced in the fibre yielding a practical sensor sensitive to NO2 in the ppm range suitable for pollution monitoring.

9.
ACS Omega ; 3(1): 1069-1080, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457949

RESUMO

All-biobased and biodegradable nanocomposites consisting of poly(l-lactide) (PLLA) and starch nanoplatelets (SNPs) were prepared via a new strategy involving supramolecular chemistry, i.e., stereocomplexation and hydrogen-bonding interactions. For this purpose, a poly(d-lactide)-b-poly(glycidyl methacrylate) block copolymer (PDLA-b-PGMA) was first synthesized via the combination of ring-opening polymerization and atom-transfer radical polymerization. NMR spectroscopy and size-exclusion chromatography analysis confirmed a complete control over the copolymer synthesis. The SNPs were then mixed up with the copolymer for producing a PDLA-b-PGMA/SNPs masterbatch. The masterbatch was processed by solvent casting for which a particular attention was given to the solvent selection to preserve SNPs morphology as evidenced by transmission electron microscopy. Near-infrared spectroscopy was used to highlight the copolymer-SNPs supramolecular interactions mostly via hydrogen bonding. The prepared masterbatch was melt-blended with virgin PLLA and then thin films of PLLA/PDLA-b-PGMA/SNPs nanocomposites (ca. 600 µm) were melt-processed by compression molding. The resulting nanocomposite films were deeply characterized by thermogravimetric analysis and differential scanning calorimetry. Our findings suggest that supramolecular interactions based on stereocomplexation between the PLLA matrix and the PDLA block of the copolymer had a synergetic effect allowing the preservation of SNPs nanoplatelets and their morphology during melt processing. Quartz crystal microbalance and dynamic mechanical thermal analysis suggested a promising potential of the stereocomplex supramolecular approach in tuning PLLA/SNPs water vapor uptake and mechanical properties together with avoiding PLLA/SNPs degradation during melt processing.

10.
Sensors (Basel) ; 17(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338635

RESUMO

Today, significant attention has been brought to the development of sensitive, specific, cheap, and reliable sensors for real-time monitoring. Molecular imprinting technology is a versatile and promising technology for practical applications in many areas, particularly chemical sensors. Here, we present a chemical sensor for detecting formaldehyde, a toxic common indoor pollutant gas. Polypyrrole-based molecularly-imprinted polymer (PPy-based MIP) is employed as the sensing recognition layer and synthesized on a titanium dioxide nanotube array (TiO2-NTA) for increasing its surface-to-volume ratio, thereby improving the sensor performance. Our sensor selectively detects formaldehyde in the parts per million (ppm) range at room temperature. It also shows a long-term stability and small fluctuation to humidity variations. These are attributed to the thin fishnet-like structure of the PPy-based MIP on the highly-ordered and vertically-aligned TiO2-NTA.


Assuntos
Nanotubos , Formaldeído , Impressão Molecular , Polímeros , Titânio
11.
Sensors (Basel) ; 15(5): 9870-81, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25923934

RESUMO

In this paper, an NO2 optical fiber sensor is presented for pollution monitoring in road traffic applications. This sensor exploits the simultaneous transmission of visible light, as a measurement signal, and UV light, for the recovery of the NO2 sensitive materials. The sensor is based on a multimode fiber tip coated with a thin film of lutetium bisphthalocyanine (LuPc2). The simultaneous injection of UV light through the fiber is an improvement on the previously developed NO2 sensors and allows the simplification of the sensor head, rendering the external UV illumination of the film unnecessary. Coatings of different thicknesses were deposited on the optical fiber tips and the best performance was obtained for a 15 nm deposited thickness, with a sensitivity of 5.02 mV/ppm and a resolution of 0.2 ppb in the range 0-5 ppm. The response and recovery times are not dependent on thickness, meaning that NO2 does not diffuse completely in the films.

12.
Opt Express ; 16(21): 16854-9, 2008 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-18852792

RESUMO

Using hydrogen as fuel presents a potential risk of explosion and requires low cost and efficient leak sensors. We present here a hybrid sensor configuration consisting of a long period fiber grating (LPFG) and a superimposed uniform fiber Bragg grating (FBG). Both gratings are covered with a sensitive layer made of WO(3) doped with Pt on which H(2) undergoes an exothermic reaction. The released heat increases the temperature around the gratings. In this configuration, the LPFG favors the exothermic reaction thanks to a light coupling to the sensitive layer while the FBG reflects the temperature change linked to the hydrogen concentration. Our sensor is very fast and suitable to detect low hydrogen concentrations in air whatever the relative humidity level and for temperatures down to -50 degrees C, which is without equivalent for other hydrogen optical sensors reported so far.


Assuntos
Ar/análise , Monitoramento Ambiental/instrumentação , Hidrogênio/análise , Fibras Ópticas , Refratometria/instrumentação , Transdutores , Catálise , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...